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SYNOPSIS 

A constitutive equation to describe the yield behavior of poly(methy1 methacrylate) (PMMA) 
is useful not only from the technological point of view, but also for the comprehension of 
the nonlinear mechanisms acting in the material. In both compression and tension, the 
yield stress is usually represented as a function of the strain rate at  different temperatures. 
In PMMA and other glassy polymers these curves are related by scaling, that is, they can 
be matched to form a master curve. Particularly in PMMA the temperature and strain rate 
dependence of the master curve has been characterized by two different models. The first 
involves two thermally activated rate processes, one acting only at  high strain rates. The 
second model interprets the yield process as a cooperative movement of several independent 
structural units, all with the same activation energy. In this article it is demonstrated that 
only the second phenomenological model is correct because it provides a good fit to the 
master curve of PMMA both in compression and tension, and verifies the properties of a 
set of curves related by scaling. Moreover, it  is pointed out that the first model leads to 
severe inconsistencies because it does not consider the nonlinear behavior of PMMA. Finally, 
the physical parameters obtained (internal stress, activation volume, and enthalpy) are 
compared with those given in the literature. 0 1995 John Wiley & Sons, Inc. 
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The dependence of the yield behavior on strain rate 
and temperature is useful not only to predict simple 
failure criteria, but to describe the mechanisms act- 
ing in a nonlinear isotropic viscoelastic material as 
well. Particularly, the yield process of glassy poly- 
mers has been examined from two different aspects: 
the molecular and structural theories, and the phe- 
nomenological models. 

The molecular theories assume that the nonre- 
coverable deformation is due to permanent changes 
in the polymeric chains. For instance, Robertson' 
considered that the intramolecular forces were the 
primary factor for deformation, its rate being a 
function of temperature. Moreover, Duckett et a1.' 
modified this theory by including the effect of the 
hydrostatic pressure. This modified model satisfac- 
torily accounts for the plastic resistance near the 
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glass transition temperature, but fails at  low tem- 
peratures over a wide strain-rate range. 

Some years later, Argon3 developed a molecular 
theory by assuming that the deformation was a con- 
sequence of the formation of a pair of molecular 
kinks. The energy required to create the kink pair 
arose from the elastic interactions between mole- 
cules ( intermolecular forces ). Argon also suggested 
that the yield process could not merely evolve 
through the formation of double kinks, but should 
require the cooperative change of several adjacent 
molecular segments. Although this theory turned out 
to be more relevant at  very low temperatures, there 
are no general physical models to describe the yield 
behavior over a wide range of both temperature and 
strain rate. 

On the other hand, the phenomenological re- 
search is based on the theory of thermally activated 
rate processes generally applied to dilute polymeric 
 solution^.^ This theory assumes that the plastic de- 
formation is due to partial motions of chain mole- 
cules over a potential energy barrier. It is not es- 
tablished whether the potential energy is associated 
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with intra- or intermolecular forces, but in any case 
on applying a stress u the barrier is reduced in uu, 
u being an activation volume. According to  this 
model, glassy polymers follow a logarithmic depen- 
dence of the yield stress on the strain rate. 

Haward and Thackray6 determined that the ac- 
tivation volumes of several glassy polymers were 2- 
10 times larger than the volume of the "statistical 
random link," so they suggested that yield involved 
the cooperative movement of a larger number of 
chain segments than for dilute solutions. Even in 
this case they considered a log( strain rate ) depen- 
dence for the yield stress. 

Roetling7 and Bauwens et a1.'-l0 also determined 
that more than one activated rate process is involved 
in the yield behavior. However, they do not consider 
a larger activation volume but the addition of the 
stresses corresponding to  the different acting mech- 
anisms. For example, Bauwens-Crowet lo tried to fit 
the strain-rate dependent yield stress curves of 
poly( methyl methacrylate) (PMMA ) by two pro- 
cesses associated with the dynamical a and p relax- 
ations. 

Otherwise Fotheringham and Cherry" described 
the yield curves of PMMA using a model based on 
n activated rate processes. They determined the 
probability of a successful cooperative event as the 
product of the probabilities of the simultaneous oc- 
currence of the n transitions. That  is to say, they 
considered that the yield stress of a cooperative sys- 
tem has the strain rate dependence of a single ac- 
tivated rate process, but to the n t h  power.",'* 

In summary, the molecular theories, associated 
with inter- or intramolecular forces, seem to provide 
scanty information to describe the whole evolution 
of the yield behavior of glassy polymers. On the con- 
trary, there is a good agreement between the yield 
data of glassy polymers and several phenomenolog- 
ical models. These models, however, are based on 
completely different physical concepts: an activation 
volume greater than the volume of the polymeric 
unit, the presence of several mechanisms with dif- 
ferent activation volumes acting independently, or 
the cooperative motion of'n identical elements lead- 
ing to a non log strain-rate dependence of the yield 
stress. 

Therefore, it was the purpose of this article to 
determine how the correct constitutive equation as- 
sociated with the strain rate and temperature de- 
pendence of the yield stress can be calculated. This 
determination requires, first, to analyze if the set of 
yield stress vs. log( strain-rate) curves measured at 
different temperatures satisfy the scaling conditions. 
If these conditions are fulfilled, the derivatives of 
the master curve will discern which phenomenolog- 

ical description is correct. In particular the procedure 
will be applied to the compression and tensile yield 
stresses of PMMA, lo giving a detailed interpretation 
of the calculated parameters. 

TH EORETI CAL CONS I DERATIO N S 

Strain Rate Dependence of Yield Point 

In the Introduction it was pointed out that the 
log( strain-rate) dependence of the yield stress 
curves measured at a fixed temperature is linear for 
several glassy polymers such as polycarbonate.8 
However, this is not the case for PMMA whose yield 
curves exhibit a definite curvature. As this curvature 
is rather smooth, how yield depends on log(strain 
rate) can be established only if the curves are mea- 
sured over many orders of strain rate, or if a master 
curve is built. Effectively, the yield curves of several 
glassy polymers, particularly PMMA, can be related 
by scaling','' in such a way that, through translations 
along a certain direction, the curves measured a t  
different temperatures can be superposed onto one 
measured at a temperature T,, taken as a reference, 
leading to  a master curve. This master curve usually 
covers several decades of the strain rate scale, so a 
phenomenological model that fits it properly should 
give a correct description of the yield process. 
Therefore, several researchers intended to charac- 
terize the yield behavior of PMMA by adjusting its 
yield master curve. 

An easy phenomenological description of the 
master curve of PMMA is based on assuming that 
a single thermally activated rate process is acting. 
For this process, the relationship between the yield 
stress u and the strain rate C is4 

with K being Boltzmann's constant. The parameters 
u and C* represent an  activation volume and a char- 
acteristic strain rate of the process, respectively, and 
usually depend on the temperature T. It must be 
noticed that a t  small strain rates the yield stress 
tends slowly to zero, while for large deformation 
rates eq. (1) reduces to 

u 2k 
- = - In($) 
T u  

which is the equation of a slanted asymptote of the 
yield curve in the a / T  against log C plot. According 
to  eq. (2), once the linear asymptote of the empirical 
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master curve is determined, the parameters of this 
model can be calculated straightforward from its 
slope and abscissa to the origin. 

A different interpretation of the yield behavior of 
PMMA was given by Bauwens-Crowet and collab- 
orators, on assuming that the empirical master curve 
has not only a slanted asymptote at high but a t  low 
strain rates, as well. This model proposes a combi- 
nation of two thermally activated rate processes, 
namely a! and p.8 The first one appears at small 
strain rates where the smooth dependence of the 
master curve is characterized by a rather flat slanted 
asymptote. The second one describes the behavior 
at high strain rates, where the curve reaches a 
sharper slanted asymptote. Thus, on considering 
Ree-Eyring's theory,13 they described these asymp- 
totes as 

and 

( 3 )  

where the subscripts a! and /3 refer to the processes 
acting at low and high strain rates, respectively. The 
parameters A,  and A ,  are derived from the slopes 
of the corresponding asymptotes while the ordinates 
to the origin lead to [Q,/RT In C,] and [Q,/RT In 
C,],  respectively. It must be pointed out that the 
values of C,, Q,, C,, and Q, can be determined only 
if the asymptotes are evaluated at different temper- 
atures. 

Using this model, Bauwens-Crowet et a1.8 also 
intended to fit the measured yield curve according 
to 

RT 
U 

T 

+ A,sinh-'(C,E exp(Q,/RT)), (5) 

but this expression did not fit the data except, of 
course, in the asymptotes. However, it was used as 
an approximation of the curve passing through the 
experimental points. 

A better description of the yield master curve 
is obtained on considering the same single acti- 
vated rate process as in eq. (I), but introducing 
an effective yield stress u* = u - ui, where ui is 
an internal stress associated with the elastic re- 
covery process before and after Moreover, 
if it is assumed that the yield point is reached when 

n segments of PMMA move simultaneously, that 
is in a cooperative way, the measured strain rate 
results in the product of the strain rate of each 
process. Particularly, if all the segments are equal, 
the relationship between 1. and the yield stress U ,  

turns out to be 

E = C*sinhn ( ( U - - h )  . 

Furthermore, an Arrhenius' temperature depen- 
dence for C* is usually assumed, E, being the preex- 
ponential factor, and AH, the activation enthalpy 
of the cooperative process, thus eq. (6) can be written 
as 

It must be noted that eq. (6) reduces to eq. (1) if 
n = 1 and ui = 0, while if ui # 0, it gives an approx- 
imation of eq. (5). In fact, Bauwens-Crowet deter- 
mined that the asymptote of the master curve of 
PMMA for the lowest measured strain rates is rather 
flat so, the stress of the a! process can be approxi- 
mated by a constant." On defining this constant as 
the internal stress ui, eq. (5) can be rewritten as eq. 
(6) with n = 1. 

Equation (6) includes four adjustable parame- 
ters to fit the empirical master curve. In a previous 
work," the parameters of PMMA were determined 
by fitting the master curve at  the glass transition 
temperature where the yield stress is lower, so it 
was assumed that ui = 0. Nevertheless, the four 
parameters of eq. (6) can be calculated without 
any assumption, if not only the master curve but 
also its derivative are considered. Effectively, eq. 
(6) can be rewritten as 

with C* = E,exp(-AH/kT) and B = 2k/u. Then, its 
partial derivative with respect to log E is 

d U  2.303B 1 
log - + - (log C - log E * )  

dlogi l ,= ( n ) n 
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Figure 1 Pattern of log(d(o/T)/d log E 1 T) vs. log E curves calculated from eq. (12). 

This expression has three adjustable parameters: B, 
log &*, and n. However, on defining the shifted vari- 
ables 

x = log & - log &* (10) 

Y = log(-& 1,) - log(--) 2.303B , (11) 

a normalized plot can be built14 and eq. (9) can be 
rewritten as 

1 1  
n 2  

y = - x - - log(1 + lo2”’”). (12) 

This equation has only one adjustable parameter n. 
This parameter modifies the shape of the log(strain- 
rate) dependence of the shifted derivative of the yield 
stress, as  shown in Figure 1. 

Hence, if the derivatives of the master curve rep- 
resented in a double-log plot can be superposed onto 
one of the curves of Figure 1 only by horizontal and 
vertical translations, the parameters n, B, and &* 
can be established. Effectively, n comes out 
straightforward from the parameter of the curve fit- 
ted to the derivative of the master curve. The hor- 
izontal and vertical shifts needed to  superpose the 
origins of both coordinate systems give log i* and 
log(2.303 B/n),  respectively. 

Once n, B, and &* are known, going back to eq. 
(8), the internal stress ui is determined in order to  
provide a good fit to  the experimental points of the 
master curve. 

Temperature Dependence of Yield Curves 

The phenomenological equation derived from the 
fitting to  the master curve provides the dependence 
of the yield stress on the strain rate, but not on 
temperature. Effectively, if the master curve is re- 
ferred to  another temperature Tb, the functional re- 
lationship between F and 1. will be the same as for 
the master curve a t  T,, but the parameters will be 
different because, in principle, they depend on tem- 
perature. This dependence can be determined if the 
translation paths employed to form the master 
curve, and the formalism developed to characterize 
a set of curves related by scaling are emp10yed.l~ 

The most important features of this formalism 
can be summarized on considering two curves in the 
(x, y )  plane, as the ones shown in Figure 2. These 

’t 

I /  p=tanQ 

- 
X 

Figure 2 Two curves in the ( x ,  y) plane, parametrized 
in z, related by scaling along the translation path of slope 
p. Points A, A or B, B have the same derivatives. 



STRAIN RATE AND YIELD STRESS OF PMMA 59 

curves, parametrized in z or in an arbitrary function 
h ( z ) ,  are related by scaling along a translation path 
of slope y. This means that the points A ,  B are 
translated to A', B' by making the increments (Ax, 
Ay) and (Ax', Ay'), respectively, in such a way that 
the following holds: 

1. Points of equal derivatives must be super- 
posed, that is, 

y,(x + Ax, z + Az) = y,(x, z )  

y,(x + Ax + Ax', z + Az) = y,(x + Ax, z )  (13) 

where the subindex indicates a partial deriv- 
ative with respect to the corresponding vari- 
able. 

2. The slope of the translation path must be 
independent from the variables, that is, 

AY - AY' - - p = constant. (14) 
Ax Ax' 

Moreover, the representations in the (y, h ( z ) )  
and (h ( z ) ,  x) planes are also related by scaling, 
their slopes of translation being 

(15) -- - a = constant W z )  
AY 

and 

planes; however, that procedure can be widely sim- 
plified on considering the functional dependence of 
curves related by scaling. 

If the scaling conditions are fulfilled, then the 
curves will belong to the same family; they are de- 
scribed by the implicit function 

or equivalently, 

In fact, when evaluated on points related by scaling, 
according to eqs. (14)-(16), the arguments of both 
implicit functions remain constant. Therefore, if a 
constitutive equation has been proposed to fit the 
y(x)  curves, it must be rewritten as the implicit 
function F. On doing this, the slopes p and p, or a 
and p are determined, as well as the function of par- 
ametrization h ( z ) .  

As an application of this formalism, the temper- 
ature dependence of the parameters u and &* for the 
single thermally activated rate process given by eq. 
(1) will be determined. Being A(1og &) and A(a/T) 
the horizontal and vertical shift paths of the yield 
curves, respectively, and defining the variables 

x = log & 

Y = log(a/T) 

z = T. 

Equation (1) can be rewritten as 
respectively. Then, it is easy to show that 

3. Because the translation is rigid, the square 
of the hypotenuse of the triangle defined by 
the increments of the variables x and y de- 
pends only on the increments of the param- 
eter 2, that is, 

[(Ax)' + (Ay)'I1/' 

= [(Ax')' + (Ay')2]1'' = M(Ah(z) )  (18) 

where M is a function of Ah(z). 

Consequently, the increment in h ( z )  can be calcu- 
lated once the horizontal and vertical translation 
paths in the (x, y )  plane as well as the slopes a and 
p are known. For the determination of these slopes 
the curves should be represented in the other two 

- log(sinh~l(lOx~'ogc* ) )  = 0. (21) 

If log &* = h(z) then the argument [x - ph(z)]  
appears in eq. (21), being p = 1. Moreover, if u is 
constant, it is found also the argument [ y  - yx], 
being y = 0. Otherwise, the implicit function is the 
one given in eq. (20) if 

Even if the scaling conditions are fulfilled, the def- 
inition of y points out that the curves can be trans- 
lated only if the vertical axis is logarithmic. How- 
ever, the yield curves are shifted in the (log C, a/T) 
plane, so the model of a single activated rate process 
cannot be used to describe the yield curves of 
PMMA. 
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Nevertheless this example illustrates the useful 
information derived from the scaling conditions. For 
example, j t  = 0, i.e., a horizontal translation, implies 
that log(2klu) is not a function of T. On the other 
hand, when a # 0,  from eq. (22), the dependence of 
the activation volume on temperature results 

log(2k/u) = h(z) /a  + constant (23) 

and taking into account that h ( z )  = log E* ,  it follows 
that 

where C is a constant. 
Further, because the arguments evaluated a t  two 

points measured a t  different temperatures and re- 
lated by scaling must remain invariable, the param- 
eters E* and u corresponding to  the individual curve 
measured a t  T can be calculated from those of the 
master curve considering that 

log E * ( T )  - log E*(T,) = A log 1. (25) 

log u ( T )  - log u(T,) = -A log(u/T) (26) 

where A log E and A log( u / T )  are the horizontal and 
vertical shift paths used to superpose the curve 
measured a t  a temperature T onto the master curve 
a t  T,. 

RESULTS 

Scaling Properties of Phenomenological Models 

In the previous section it was shown that the yield 
curves of PMMA cannot be described by Eyring's 
equation. Now, we open the discussion about the yield 
behavior of PMMA, which is associated to two differ- 
ent processes, according to Bauwens-Crowet,"*16 and 
to a cooperative thermally activated mechanism, ac- 
cording to Fotheringham and Cherry." In order to 
solve this discrepancy, first it will be analyzed whether 
any of these models fulfills the scaling conditions. If 
this is not so, then the model will be immediately in- 
validated because the empirical yield curves can be 
matched to form a master curve. 

Bauwens-Crowet and coworkers proposed a phe- 
nomenological model with a constitutive equation 
that did not fit the whole yield curve of PMMA, but 
only its a and a + /3 asymptotes. The first one, de- 
termined a t  very low strain rates, is associated to  
the a process while the other is observed a t  high 
strain rates where both the a and 0 processes appear. 

Moreover, the yield curves measured at different 
temperatures, particularly their asymptotes, can be 
superposed to form a master curve. Therefore, the 
equations of the asymptotes should verify the scaling 
conditions. On introducing the parameters 

-1 

&,* = [2C'FP(%)] 

the a and a + f? asymptotes given in eqs. (3) and (4) 
can be expressed as 

and 

respectively. 
Bauwens-Crowet" established that, for PMMA, 

the slopes of both asymptotes A,  and A, + A ,  were 
constants while the ordinates In EX and In 1.; de- 
pended on temperature according to eqs. (27) and 
(28), respectively. Thus, the a asymptotes deter- 
mined at  different temperatures constitute a set of 
parallel straight lines, and the same happens to  the 
a + f? asymptotes, achieving another set of parallel 
lines with a different slope. 

I t  can be easily shown that a set of parallel 
straight lines can be superposed by translations in 
any direction; however, as the translation of the yield 
curves is rigid, both the a and the a + /3 asymptotes 
must be shifted along the same direction and with 
the same horizontal and vertical translation paths. 
Therefore, in the Appendix it is demonstrated that, 
in order to fulfill the scaling conditions, the slope 
of translation must be 

From the graphic superposition of the yield curves 
of PMMA a t  different temperatures, Bauwens- 
Crowet established that the mean slope of transla- 
tion corresponding to the compression tests was /* 
= -4.5 X lo4 Pa/K." Taking into account the pa- 
rameters of the curves derived in her publication, 
summarized in Table I, eq. (31) gives = -7.5 
X lo4 Pa/K, that is, a hardly sharper slope that does 
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Table I 
of PMMA at 373 K 

Parameters of Yield Curves 

AaC = 6958 Pa 
A,, = 5390 Pa 
A,  = 36652 Pa 
c, = 5 x 10-52 
c, = 4.67 x 10-17 
Q, = 412 kJ/mol 
Q, = 107 kJ/mol 

not modify the master curve within the experimental 
error. On the other hand, using the parameters de- 
termined from the tensile yield curves, eq. (31) leads 
to p = -3.6 X lo4 Pa/K, which is equal to the em- 
pirical value derived graphically. Therefore, both in 
tension and compression, the asymptotes of the yield 
curves of PMMA might be well represented by the 
model of two processes because it verifies the scaling 
properties. This model, however, is valid only for 
extrapolations at  very low or high strain rates, so 
the second phenomenological model, based on the 
cooperative motion of n simultaneous processes, will 
be considered. The strain rate dependence of the 
yield stress of this model is given in eq. (8) so, first 
it will be analyzed if this equation obeys the scaling 
conditions. That is to say, it will be determined if, 
in principle, the model guarantees the properties of 
translation of the yield curves of PMMA. 

On defining the variables 

x = log E,  

Y = u /T ,  

z = T,  

eq. (8) can be expressed as 

This equation can be written in the form of the im- 
plicit functions given in eqs. (19) or (20) if n and u 
are constants, and if log i* depends only on T. In 
this way it can be defined h ( z )  = log E * ( T ) ,  getting 
the argument [x - ph(z)] with /3 = 1. 

Then, eq. (32) takes the form given in eq. (19) if 

px + c (33) 
(Ti 

y - T = y -  
where C is a constant. Because ui does not depend 
on x, eq. (33) is fulfilled only if p = 0, i.e., if the yield 
curves are translated horizontally, being UJT = C. 

As this is not the case, eq. (32 )  must be written using 
the arguments of the implicit function given in eq. 
(20). The first argument, [x - ph(z)], has already 
been determined; the second one, [ h ( z )  - ay] or 
equivalently [ y  - h(z) /a] ,  leads to 

(34) 

On considering the definition of h ( z )  and eq. (17), 
the parameters ui and E* of the yield curve become 
related by 

U .  
2 = p logi* + c. (35) T 

Moreover, once the parameters of the master curve 
are known, the scaling properties lead to the tem- 
perature dependence of the parameters of the in- 
dividual yield curves. Effectively, the horizontal and 
vertical shift paths Ax = A log C and Ay = A(u/T), 
respectively, are related to the increments of the 
parameters ui and log E*, according to 

log k * ( T )  = log E*(Ts) + A(1og E )  (36) 

(37) 

Furthermore, if the Arrhenius' dependence on tem- 
perature employed in eq. (7) is assumed for 1.*, eq. 
(35) leads to 

ui = p log E,T - [ p  + C ]  . (38) 

In summary, both the model of two processes, a 
and p ,  as well as the cooperative model fulfill the 
scaling properties of a set of curves with a slope of 
translation p. However, the former only fits the 
asymptotes of the yield master curve of PMMA, so 
it does not represent its yield behavior properly. 
Then, the question is: Does the cooperative model 
provide a good fitting to the whole master curve of 
PMMA? 

Constitutive Equation of Yield Behavior of PMMA 

The cooperative model, characterized by eq. (8), have 
four parameters: the number of cooperative units, 
n; the activation volume, u; the internal stress, ai; 

and the characteristic strain rate, i*. These param- 
eters can be determined using the procedure detailed 
previously. Then, to determine whether the yield 
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Figure 3 Compression yield curves a t  different temperatures. (*) Values measured by 
Bauwens-Crowet." The full curves correspond to the cooperative model described by eq. 
(8) with the parameters given in Table 111. 

behavior of PMMA is described by this cooperative 
model, the procedure will be applied to both the 
compression and tensile yield curves of PMMA 
measured at  different temperatures," which are 
represented in Figures 3 and 4, respectively. 

The parameter n can be determined by the 
graphical superposition of d ( u / T ) / d  log 1. against 1. 
represented in a double-log plot, onto the pattern of 
the family of curves given in Figure 1. Then, the 
first attempt is to calculate the derivatives of the 
compression yield curves measured at  different 
temperatures. These derivatives, represented in the 
double-log plot shown in Figure 5 ,  are rather smooth, 
except a t  the highest temperature where its numer- 

-5 -4 -3 -2 -1 

log [i (s-')I 
Figure 4 Tensile yield curves at  different temperatures. 
(*) Values measured by Bauwens-Crowet." The full curves 
correspond to the cooperative model described by eq. (8) 
with the parameters given in Table 111. 

ical determination is difficult because of the great 
experimental error. Anyway, even at the lower tem- 
peratures, the strain rate interval of the individual 
curves is so narrow that any derivative can be a piece 
of several of the pattern curves given in Figure 1. 

Thus, in order to get a larger strain rate interval, 
the yield master curve of the compression data re- 
ferred to 373 K is derived numerically." Figures 6 
and 7 show the compression master curve and its 
derivative, respectively. Because the derivative is 
extended over nearly 12 orders of magnitude, its su- 

-4 -3 -2 -1 

log[& (s-l)] 

Figure 5 Double-log plot of the derivatives of the 
compression yield curves given in Figure 3. 
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Figure 6 Compression yield master curve of PMMA a t  
373 K. (0 )  Measurements translated by Bauwens- 
Crowet." The full curve is derived from eq. (8) with the 
parameters given in Table 11. 

perposition onto the pattern curves determines that 
5 < n < 10. Effectively, if n is lower than 5 or greater 
than 10, the pattern curves are sharper or smoother 
than the derivative of the master curve, respectively. 
In order to arrive a t  the precise value of n, eq. (12) 
was fitted numerically to  the derivative of the 
compression master curve, leading to  n = 6.65. 

Moreover, according to eq. (10) the horizontal 
shift between the coordinate frames, namely Ax, is 
directly equal to  log E* while from eq. ( l l ) ,  the ver- 
tical shift Ay is equal to log(2.303B/n), leading to  
the activation volume because B = 2k/u. Once n, u, 
and log E* are determined, ui is adjusted numerically 
in order that eq. (8) provides a good fitting to the 
master yield curve, as shown in Figure 6. The pa- 
rameters calculated from the master yield curve of 
the compression data are summarized in the first 
column of Table 11. 

The same procedure is also applied to  the master 
yield curve of PMMA in tension, leading to the fit- 

Figure 7 
curve represented by (*) in Figure 6. 

Double-log plot of the derivative of the master 

Table I1 
Compression and Tensile Master Yield Curves of 
PMMA" at 373 K 

Parameters of Cooperative Model for 

Compression Tension 
n 6.65 6.65 

~ 

log i* 2.15 2.15 
8.39 x 10-29 1.15 X lo-" 

9.6 X 1OI6 

v (m3) 
ui (MPa) 0.46 0.00 
E, (s-1) 1.6 x 1 0 1 ~  

AH (kJ/mol) 107 105.9 

ting shown in Figure 8, with the parameters detailed 
in the second column of Table 11. Consequently, the 
cooperative model can be used to characterize the 
yield behavior of PMMA. 

Now, on considering the horizontal and vertical 
translation paths employed by Bauwens-Crowet to 
form the master curves, the parameters log h* and 
ui of the individual curves can be calculated." Ef- 
fectively, on replacing the parameters of the master 
curves and the translation paths given in Table I11 
into eqs. (36) and (37), the internal stress and the 
characteristic strain rate a t  each temperature, sum- 
marized in Table 111, are obtained. 

Finally, Figure 9 shows that the parameter log 
i* of the individual yield curves is linearly related 
to 1/T both in compression and tension. In fact, a 
least squares fitting to these representations give 
correlation coefficients -0.9998 and -0.9999 for 

1 ' 1 ' 1 ' 1 -  

m 

1.2 t 

-4 -3 -2 -1 0 

log[& (9-')I 

Figure 8 Tensile yield master curve of PMMA a t  373 
K. (*) Values measured by Bauwens-Crowet." The full 
curves correspond to the cooperative model described by 
eq. (8) with the parameters given in Table 111. 
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Table I11 Horizontal (A log C) and Vertical [A(a/ 
T)] Shift Paths, and Parameters of Individual 
Yield Curves Measured at Temperature T 

former approaches only the asymptotes. According 
to these results, the cooperative model should pro- 
vide a correct description of the yield behavior of 
PMMA. Nevertheless, Bauwens-Crowet argued the 
existence of two different processes based not only 
on the asymptotes of the master curve, but also on 

T A(u/T) 1% ui 
(K) A l o g i  (lo4 Pa/K) C *  (MPa) 

253 7.090 
273 5.418 
298.4 3.866 
313 2.766 
333 1.638 
353 0.776 
373 - 

323 2.291 
333 1.797 
343 1.303 
353 0.844 
363 0.422 
373 - 

Compression 

-29.0 
-23.0 
-17.7 
-12.6 
-7.60 
-3.60 

Tension 

-8.14 
-6.38 
-4.63 
-3.00 
- 1.50 

-4.94 73.7 
-3.27 63.1 
-1.72 52.5 
-0.61 39.8 

0.51 25.7 
1.37 13.1 
2.15 0.45 

-0.14 26.3 
0.35 21.3 
0.85 15.9 
1.31 10.6 
1.73 5.44 
2.15 0.00 

compression and tension, respectively. That  is, the 
Arrhenius' dependence of log E* given in eq. (7) is 
also verified, with the values of E, and AH detailed 
in the last two rows of Table 11. 

DISCUSSION 

In the previous section it was shown that the phe- 
nomenological models proposed by Bauwens- 
Crowet" and Fotheringham and Cherry" satisfy the 
scaling conditions. However, the latter provides a 
good fitting to the empirical master curve, while the 

a relationship between the internal friction peak and 
the temperature dependence of the yield point. Thus, 
the following comments on the assumptions involved 
in her relationship intend to clarify this apparent 
discrepancy. 

First, the parameters determined by Bauwens- 
Crowet to  fit the asymptotes should be considered 
with caution. Particularly C, = 5 X lops2 s, that 
represents the inverse of the jump frequency asso- 
ciated to  the N process, is extremely small because 
it should be at  least of the order of the Debye's fre- 
quency. Furthermore, in order to  get an acceptable 
value for the yield stress of the a process, she derived 
an  activation energy of 412 kJ/mol. This value is 
high when it is compared, for example, with the ac- 
tivation energy of 176 kJ/mol determined by 
Thompson'7 for the N relaxation. The differences 
both in C,, and AH, come from the assumption that 
a slanted asymptote is reached at  low strain rates. 
Actually this is not the case because eq. ( a ) ,  which 
gives a good fitting to the whole empirical master 
curve, does not exhibit a slanted asymptote but ap- 
proaches slowly to the internal stress ( ~ i  as the de- 
formation rate goes to zero. That  is, the yield stress 
against strain-rate curves cannot be characterized 
by two different sets of parameters, but must be as- 
sociated to a unique mechanical process. 

Second, Bauwens-Crowet considered that the 
yield process was produced by two mechanisms be- 
cause the internal friction peak could be decomposed 
in several hypothetical individual peaks, two of them 

- l ' l ' l ' l ' l ' l '  

3 -  - 

n 1 -  
n 
I 

U 

" 
m 

* 
'4) 

an 
0 

U 

d 

Figure 9 Temperature dependence of log C*: (A) in compression and (7) in tension. 
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with the same energies as the ones derived from the 
yield curves. It is noticed that instead of the sub- 
jective splitting of the internal friction peak, a rig- 
orous procedure" should be used. This analysis is 
beyond the scope of this article, so the following 
comments refer only to the hypothetical splitting. 

Bauwens-Crowet determined that the p relaxa- 
tion could be characterized by the peak whose ac- 
tivation energy was similar to the one corresponding 
to the p process. Then, she calculated the temper- 
ature dependence of the partial yield stress asso- 
ciated to the p process, namely up, from the internal 
friction peak of the p relaxation determined as a 
function of temperature at a given frequency. To do 
that, she assumed that a Newtonian viscosity 

could be defined to relate linearly u, and the strain 
rate. This linear relationship is possible only if up 
< A,T,  imposing a restriction to the interval of tem- 
perature where Bauwens-Crowet's treatment should 
be applied. For example, it is not valid at  253 K 
because the previous condition gives a, 6 92.9 MPa 
while the measured yield stress minus the stress as- 
sociated to the a process leads to ap = 72 MPa. 

On considering only the temperature range where 
the previous assumption is valid, Bauwens-Crowet 
followed the description of the /3 peak using a phe- 
nomenological model of three elements. This ine- 
lastic element was characterized by a relaxation time 
r = q,/G,, G, being a shear modulus in such a way 
that r depended on the parameters C,, A,,  Q,, and 
G,. She also supposed that the peaks measured at 
different temperatures had all the same shape and 
were only horizontally shifted in such a way that 
the product between the frequency and the temper- 
ature of the peak was constant. Further, she estab- 
lished that the /3 relaxation was not due to a single 
relaxation time but to a distribution P(C,) corre- 
sponding to different values of C,. Therefore, she 
calculated the derivative of uR as 

where K = duo( C,) /dT = A,ln ( 2C,C) and d ( In C p )  
= ( -QR/R)d( l /T ) ,  leadingto 

omitting that K depends on C, and, in consequence, 
on temperature. 

Moreover, assuming that the strength of relaxa- 
tion A = G,/G, 6 1, Bauwens-Crowet found that 
the distribution P was proportional to the internal 
friction. In this way, she calculated up from the dou- 
ble integration of the internal friction peak multi- 
plied by a fitting constant that should not be directly 
K but a mean value of the derivative of u,. 

In summary, the more important assumptions 
made by Bauwens-Crowet were: 

a linear relationship between u, and the strain 
rate, according to a phenomenological model of 
three parameters, and 
an internal friction peak whose shape does not 
depend either on frequency or on the amplitude 
of deformation. 

The first assumption does not correspond to the 
fact that the asymptotes of the u against log 1. 
curves were described by a nonlinear relationship. 
The second supposition is not valid because, for 
instance, Heijboer 2o measured that not only the 
position of the maximum of the loss tangent peak, 
but also its shape changes as the frequency in- 
creases. Moreover, recently i t  has been measured 
that the internal friction depends strongly on the 
strain amplitude.21 In consequence, the double in- 
tegral of the internal friction peaks measured at  
the same frequency but a t  different deformation 
levels would lead to yield stresses up that  depend 
on the deformation level. Therefore, these severe 
inconsistencies lead straightforward to set aside 
the model of two processes acting independently. 

On the other hand, a very good approximation of 
the master curve is found on considering the coop- 
erative model proposed by Fotheringham and 
Cherry." Practically the same values of n, &*, E,, 
A H ,  and u are determined both in tension and 
compression. Moreover, nearly the same values were 
found for the internal stress, ui , either in compres- 
sion or in tension, at  the same temperature. This is 
expected because ui is related to the past thermo- 
mechanical history. An interesting point is that the 
values of ui,  given in Table 111, vary with temper- 
ature, both in tension and compression, according 
to the law 

with uio = 0.64 MPa, T, = 372 K, and a correlation 
coefficient of 0.993. We do not have a physical model 
at the moment to explain this temperature depen- 
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dence of ui . T, is very close to  the glass transition 
temperature of PMMA.22 

A quite different analysis of the yield stress data 
of PMMA has been performed by Haussy et  al.23 
and Lefebvre and E ~ c a i g . ~ ~  In fact, the strain rate 
is expressed by these authors as 

E = E * (  u, T)exp [ - AGaL;T)] (42)  

where both the preexponential factor and the Gibbs 
free energy of activation are assumed stress and 
temperature dependent. They gave a procedure to 
obtain AG, from the experimental data by assuming 
E *  cc ( u  - u ~ ) ~ ,  where m is a constant. The oper- 
ational activation volume, u,, defined as 

u, = kT( 5) 
T,struct 

(43) 

where struct means any structural variable, is given 
by 

u, being the true activation volume, that is, 

d AG, 
. 

T,struct 

(44) 

(45) 

u, gives the size of the activation event ( that  is, the 
number of atoms activated) coherently. These au- 
thors, however, do not give any information either 
on u, or on ui . A comparison can be made between 
our and their analysis of the data in the following 
way: on considering eq. ( 6 )  u, is given by 

(46) 
nu 1 

u, = - 
u - U i ) U  

( 2kT ] 
with n = 6.65 and u = 8.30 X lo-'' m3. This equation 
gives values for u, that are in the range of 0.3-0.6 
nm3, for ui = 0. Values between 0.3 and 1 nm3 are 
obtained if the internal stresses indicated in Table 
I11 are used, in the range of strain rates covered by 
Figure 2. The values for u, calculated by means of 
eq. (46) are similar to  those reported in table I1 of 

Lefebvre and E s ~ a i g . ~ ~  Moreover, the apparent ac- 
tivation enthalpy is given by 

Jo.struct 

that, on using eq. ( 7 )  reduces to  

(47)  

nu (u - ui )  
A H , = A H - -  . (48) 

2kT 
tanh[ ( u - U i ) U  ] 

This equation, with A H  = 107 kJ/mol and u = 8.39 
X m3, gives values for AH, quite similar to 
those reported in table I1 of Lefebvre and E ~ c a i g ~ ~  
for ui = 0. Slightly higher values are obtained for ui 
# 0. It should be pointed out that, according to  their 
table 11,24 AH, tends to AH a t  high temperatures, 
as  expected from eq. (48) .  Finally, in the formalism 
used by them,23,24 it is difficult to  explain the su- 
perposition of the different curves to form a master 
curve. 

In summary, it can be stated that some of the 
physical parameters obtained in this work are com- 
patible with those reported in the l i t e r a t~ re?~ , '~  
which were calculated by means of a thermal acti- 
vation analysis of the data. As stated previously, the 
works r e ~ o r t e d ~ ~ . ~ ~  do not give any information on 
u,. It might be possible that u, = u,  so that u, as 
found in this article is the true activation volume. 
I t  is clear that further work is needed. Moreover, 
within the formalism used by several a~ tho r s , ' ~ , ' ~  it 
is very difficult to explain the superposition of the 
individual a /T  against log C curves to form a master 
curve. 

The activation volume, u, is very similar to the 
values given in the literature by Argon and Besso- 
~ o v . ' ~  These authors treat the plastic deformation 
behavior of several glassy polymers, showing that 
when the stiff units become more complex, the plas- 
tic deformation becomes less local. From experi- 
mental and structural data, their treatment leads to 
determine the average number of molecular seg- 
ments in the activated configuration as well as to  
classify if these segments move together in a linear 
chain or if they act collectively as a microbundle. 
Particularly for PMMA, it is determined that the 
ratio of the monomer unit is practically the same as 
that of the polymer segment, while the ratio between 
the lengths of a rotation segment and of a segment 
between natural hinges is equal to 5.3. Therefore, 
the yield behavior of PMMA is governed by a linear 
chain where more than five stiff units move coop- 
eratively. This result is very similar to the one de- 
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rived on fitting the experimental data using eq. (8) 
where n = 6.65. Further, Argon and Bessonov es- 
tablished that this parameter does not depend sig- 
nificantly on temperature. This characteristic has 
also been derived directly from the scaling conditions 
of the yield curves. 

CONCLUSIONS 

It was intended in this article to determine whether 
any of the phenomenological models proposed by 
Bauwens-Crowet and Fotheringham and Cherry 
really describes the yield behavior of PMMA. This 
determination would provide not only the best ap- 
proximation of the empirical yield curves, and also 
might clarify the response of the molecular structure 
during the yield process. 

The tools employed to discern these models are, 
on one hand, the scaling properties of a set of curves 
related by scaling and, on the other hand, an accu- 
rate method to determine adjusting parameters fit- 
ting not only the curve but also its derivative. On 
applying these tools, it is established that the yield 
behavior of PMMA is described properly by Foth- 
eringham and Cherry's cooperative model." 

The numerical procedure developed here also 
achieves the calculation of the whole set of param- 
eters without any hypothesis. For instance, instead 
of assuming that the internal stress is zero,l' its 
value is derived by fitting the master curve. 

The other parameters also provide fairly interesting 
information about the structure. Particularly the ac- 
tivation volume and the adjusting parameter n can be 
used to characterize the cooperative movement of the 
segments of each PMMA molecule in the glassy state. 
Furthermore, the apparent activation volumes and 
enthalpies are quite similar to those obtained by a 
thermal activation analysis of the tensile data. 

Finally, it must be noticed that the same meth- 
odology can be applied to other nonlinear polymers, 
giving a quantitative description of the molecular 
movements. However, more effort must be devoted 
principally to determine whether the intermolecular 
or intramolecular forces govern the local rearrange- 
ment, in order to understand the yield behavior of 
glassy polymers. 
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APPENDIX 

On considering the variables 

it is immediate that the asymptotes given in eqs. 
( 29) and ( 3 0 ) ,  can be written as 

y = A,x + A,h,(z) 

and 

for the low and high strain rates, respectively. Now, 
when the asymptotes parametrized in z + Az are 
superposed onto those determined at  z with a slope 
of translation p, the horizontal and vertical dis- 
placements of the a asymptote are related by 

and analogously, for those of the a + p asymptote 
it results 

AY2 = P A X 2  

= (A, + A,) Ax2 + A,Ah, + AOAhp. (A.2) 

From eqs. ( A . l )  and (A.2) it is easy to show that 

(A.3) 

Moreover, as the shift of the yield curve must be 
rigid, the increments of the variables x and y cor- 
responding to the asymptote a must be the same as 
those of the asymptote a + p, that is, 
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Then, eqs. (A.3)  and (A.4) lead to 

Hence, on considering eqs. (27)  and ( 2 8 ) ,  the in- 
crement of h, can be written as 

Ah, = - Q, A( $) 
R 

and an analogous expression results for h,. Then, 
the slope of translation results in 

giving a relationship among the activation energies 
and A,.  

Bauwens-Crowet lo established that the parame- 
ters A ,  and A ,  could be determined from the slopes 
of the asymptotes, and the activation energies could 
be calculated using an equation that considered the 
horizontal distances between the asymptotes. It is 
now shown that this equation can also be derived 
straightforward from the scaling conditions. Effec- 
tively, on considering the a asymptote a t  two dif- 
ferent temperatures, T and T,, the horizontal dis- 
tances between them, calculated from eq. ( A . l )  on 
considering that Ay = 0 results in 

Similarly, from eq. (A.2)  the horizontal distance be- 
tween the CY + /3 asymptotes a t  T and subscript s 
gives 

AX,+, = Ah,( Z )  + Ah,( 2). (A.9 1 

Finally, taking into account eqs. ( 2 7 )  and ( 2 8 ) ,  it 
follows 

A x  = Q  --- 
I a( f 1) (A.lO) 

which are the expressions suggested by Bauwens- 
Crowet, lo but without demonstration. 
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